Welcome Home

Thursday, September 13, 2012

What type of filter should I use in my furnace

How to choose a furnace filter


Information from the Environmental Protection Association:

Most mechanical air filters are good at capturing larger airborne particles, such as dust, pollen, dust mite and cockroach allergens, some molds, and animal dander. However, because these particles settle rather quickly, air filters are not very good at removing them completely from indoor areas. Although human activities such as walking and vacuuming can stir up particles, most of the larger particles will resettle before an air filter can remove them.

Consumers can select a particle removal air filter by looking at its efficiency in removing airborne particles from the air stream that passes through it. This efficiency is measured by the minimum efficiency reporting value (MERV) for air filters installed in the ductwork of HVAC systems. The American Society of Heating, Refrigerating and Air-Conditioning Engineers, or ASHRAE developed this measurement method. MERV ratings (ranging from a low of 1 to a high of 20) also allow comparison of air filters made by different companies.

• Flat or panel air filters with a MERV of 1 to 4 are commonly used in residential furnaces and air conditioners. For the most part, such filters are used to protect the HVAC equipment from the buildup of unwanted materials on the surfaces such as fan motors and heating or cooling coils, and not for direct indoor air quality reasons. They have low efficiency on smaller airborne particles and medium efficiency on larger particles, as long as they remain airborne and pass through the filter. Some smaller particles found within a house include viruses, bacteria, some mold spores, a significant fraction of cat and dog allergens, and a small portion of dust mite allergens.

Filters with a MERV between 7 and 13 are likely to be nearly as effective as true HEPA filters.

• Pleated or extended surface filters

o Medium efficiency filters with a MERV of 5 to 13 are reasonably efficient at removing small to large airborne particles. Filters with a MERV between 7 and 13 are likely to be nearly as effective as true HEPA filters at controlling most airborne indoor particles. Medium efficiency air filters are generally less expensive than HEPA filters, and allow quieter HVAC fan operation and higher airflow rates than HEPA filters since they have less airflow resistance.



o Higher efficiency filters with a MERV of 14 to 16, sometimes misidentified as HEPA filters, are similar in appearance to true HEPA filters, which have MERV values of 17 to 20. True HEPA filters are normally not installed in residential HVAC systems; installation of a HEPA filter in an existing HVAC system would probably require professional modification of the system. A typical residential air handling unit and the associated ductwork would not be able to accommodate such filters because of their physical dimensions and increase in airflow resistance.

Some residential HVAC systems may not have enough fan or motor capacity to accommodate higher efficiency filters. Therefore, the HVAC manufacturer’s information should be checked prior to upgrading filters to determine whether it is feasible to use more efficient filters. Specially built high performance homes may occasionally be equipped with true HEPA filters installed in a properly designed HVAC system.

There is no standard measurement for the effectiveness of electronic air cleaners. While they may remove small particles, they may be ineffective in removing large particles. Electronic air cleaners can produce ozone — a lung irritant. The amount of ozone produced varies among models. Electronic air cleaners may also produce ultrafine particles resulting from reaction of ozone with indoor chemicals such as those coming from household cleaning products, air fresheners, certain paints, wood flooring, or carpets. Ultrafine particles may be linked with adverse health effects in some sensitive populations.